A local adaptive discontinuous Galerkin method for convection-diffusion-reaction equations
نویسندگان
چکیده
We introduce a local adaptive discontinuous Galerkin method for convection-diffusion-reaction equations. The proposed is based on coarse grid and iteratively improves the solution's accuracy by solving elliptic problems in refined subdomains. For purely diffusion problems, we already proved that this scheme converges under minimal regularity assumptions [A. Abdulle G.Rosilho de Souza, ESAIM: M2AN, 53(4):1269--1303, 2019]. In paper, provide an algorithm automatic identification of problems' subdomains employing flux reconstruction strategy. Reliable error estimators are derived method. Numerical comparisons with classical nonlocal illustrate efficiency
منابع مشابه
Adaptive Discontinuous Galerkin Methods for Nonlinear Diffusion-Convection-Reaction Equations
In this work, we apply the adaptive discontinuous Galerkin (DGAFEM) method to the convection dominated non-linear, quasi-stationary diffusion convection reaction equations. We propose an efficient preconditioner using a matrix reordering scheme to solve the sparse linear systems iteratively arising from the discretized non-linear equations. Numerical examples demonstrate effectiveness of the DG...
متن کاملHybridized Discontinuous Galerkin Method for Convection-Diffusion-Reaction Problems
In this paper, we propose a new hybridized discontinuous Galerkin method for the convection-diffusion-reaction problems with mixed boundary conditions. The coercivity of the convection-reaction part is achieved by adding an upwinding term. We give error estimates of optimal order in the piecewise H1-seminorm. Furthermore, we show that the approximate solution of our scheme is close to that of t...
متن کاملDiscontinuous Galerkin Method for Fractional Convection-Diffusion Equations
We propose a discontinuous Galerkin method for fractional convection-diffusion equations with a superdiffusion operator of order α(1 < α < 2) defined through the fractional Laplacian. The fractional operator of order α is expressed as a composite of first order derivatives and a fractional integral of order 2 − α. The fractional convection-diffusion problem is expressed as a system of low order...
متن کاملThe discontinuous Galerkin method for fractional degenerate convection-diffusion equations
We propose and study discontinuous Galerkin methods for strongly degenerate convection-diffusion equations perturbed by a fractional diffusion (Lévy) operator. We prove various stability estimates along with convergence results toward properly defined (entropy) solutions of linear and nonlinear equations. Finally, the qualitative behavior of solutions of such equations are illustrated through n...
متن کاملLocal Discontinuous Galerkin Method for Diffusion Equations with Reduced Stabilization
We extend the results on minimal stabilization of Burman and Stamm (”Minimal stabilization of discontinuous Galerkin finite element methods for hyperbolic problems”, J. Sci. Comp., DOI: 10.1007/s10915-007-9149-5) to the case of the local discontinuous Galerkin methods on mixed form. The penalization term on the faces is relaxed to act only on a part of the polynomial spectrum. Stability in the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational Physics
سال: 2022
ISSN: ['1090-2716', '0021-9991']
DOI: https://doi.org/10.1016/j.jcp.2021.110894